If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(4x^2-1)+(2x+1)=3
We move all terms to the left:
4(4x^2-1)+(2x+1)-(3)=0
We multiply parentheses
16x^2+(2x+1)-4-3=0
We get rid of parentheses
16x^2+2x+1-4-3=0
We add all the numbers together, and all the variables
16x^2+2x-6=0
a = 16; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·16·(-6)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{97}}{2*16}=\frac{-2-2\sqrt{97}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{97}}{2*16}=\frac{-2+2\sqrt{97}}{32} $
| 16x^2+32x+48=0 | | 70x+29=70 | | 16x^2+2x=6 | | 3^x+1=0.45 | | 50=26x+1 | | -3x-1.6=4.7 | | 50x+3=10 | | 24m+85=$685 | | 25x+6=30 | | (2(t+1))/(t²+2t+3)=0 | | =3x-64x+1 | | C(s)=(s–5)2+15 | | 3x+8=17,60 | | -9x-3=-5x-31 | | -3/8x-5/24x=-30 | | 2+13+x=33 | | -x²+8x-15=0 | | x*0.08=60 | | x+21=-4x+91 | | -5=5(4x-5) | | 4*x*x*x*x*x*x*x*x-2*x*x*x*x*x*x*x=0 | | x2-6x+9=49 | | -x2+6(x-2)=0 | | 3x²+7x-8=0 | | (28-4*x)^3=0 | | 2²(5^x+1)=500 | | – p7 =3 | | c/4=11/2 | | 22-(7m)=1 | | 2x=1=79 | | √3+√(4+√x+3)^2/6=3 | | 40−2x/3=36 |